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Abstract—We consider decentralized detection (DD) of an
unknown signal corrupted by zero-mean unimodal noise via
wireless sensor networks (WSNs). To cope with energy and/or
bandwidth constraints, we assume that sensors adopt multi-
level quantization. The data are then transmitted through binary
symmetric channels to a fusion center (FC), where a Rao test is
proposed as a simpler alternative to the generalized likelihood
ratio test (GLRT). The asymptotic performance analysis of
the multi-bit Rao test is provided and exploited to propose a
(signal-independent) quantizer design. Numerical results show
the effectiveness of Rao test in comparison to GLRT and the
performance gain obtained by threshold optimization.

Index Terms—Decentralized detection (DD), multilevel quan-
tization, Rao test, wireless sensor networks (WSNs).

I. INTRODUCTION

Decentralized detection (DD) via wireless sensor networks
(WSNs) has received significant attention by the scientific
community in last decade [1]–[6]. Due to stringent energy
and/or bandwidth constraints, sensors are usually required to
quantize their observations (in one-bit as the simplest and
coarsest option), before reporting them to a fusion center (FC)
where a global decision is taken [7], [8]. In this case, the op-
timal per-sensor test is a quantization of the local Likelihood-
Ratio (LR) [9], [10]. Sadly, (𝑎) the (crucial) optimized design
of sensors’ thresholds is a complex task [1], [2] and (𝑏) lack
of knowledge of the parameters of the target to be detected
precludes sensor LR computation [2]. Thus the bit(s) sent is
either the result of a “dumb” quantization [11] or (in one-bit
case) embodies the estimated binary event via a sub-optimal
rule [5]. Also, often the signal model is only partially-known
and the FC is then faced to tackle a composite hypothesis test;
in such a case the generalized likelihood ratio test (GLRT) is
usually employed as the relevant fusion rule [12]–[14].

Accordingly, in [12] one-bit DD (over error-prone reporting
channels) via a GLRT at the FC was tackled to detect an
unknown deterministic signal, whereas, as a simpler alter-
native, an one-bit Rao test was adopted in [11]. In both
these works, threshold optimization was performed via their
common (weak-signal) asymptotic performance [15] and the
optimal value shown to be zero, except for some heavy-tailed
distributions. More recently, a generalized form of Rao test has
been devised for one-bit DD of uncooperative targets [16].

Apparently, there is a notable performance gap between the
one-bit detector and that using unquantized observations, due

to the amount of useful information lost [12]. In this respect
multi-level quantization is sought to fill this gap by trading
off performance and complexity. In view of these reasons,
multi-bit DD of a signal parameter in Gaussian noise in WSNs
has been recently considered in [13], where a non closed-
form multi-bit GLRT has been devised and a (weak-signal)
asymptotically-optimal threshold set choice obtained, resorting
to particle swarm optimization algorithm (PSOA) [17].

To this end, herein we focus on DD of a noise-corrupted
unknown parameter in WSNs [11]–[13], with sensors adopting
multi-bit quantizers, similarly to [13]. However, as opposed to
[13] where Gaussian noise was assumed, we only constrain
the noise to be zero-mean unimodal-symmetric. Also, to model
low-powered transmissions, the quantized data is assumed to
be transmitted via binary symmetric channels (BSCs) to the
FC. To capitalize multi-level measurements, we develop a
(computationally-) simpler alternative fusion rule to the GLRT
in [13], corresponding to a multi-bit Rao test, comprising the
one-bit counterpart in [11] as a special case. Its appeal lies in
absence of any estimation procedure and availability of closed-
form even in the considered general model. We provide the
asymptotic (weak-signal) performance of Rao test and then,
leveraging its closed-form, we propose a quantizer design for
the sensors, via PSOA (following [13]). Simulations show that
Rao test, other than asymptotically behaving as the GLRT, it
practically achieves the same performance for a finite number
of sensors and different resolutions.

The rest of the paper is organized as follows. Sec. II
introduces the model whereas in Sec. III the multi-bit Rao test
is derived; in Sec. IV an asymptotic analysis of the multi-bit
Rao test is presented, and the multi-level quantizers designed
by using the PSOA. Numerical results are provided in Sec. V.
Finally, conclusions and future directions are given in Sec. VI1.

1Notation - Lower-case bold letters denote vectors, with 𝑎𝑛 being the
𝑛th element of 𝒂; upper-case calligraphic letters, e.g. 𝒜, denote finite sets;
𝔼{⋅} and (⋅)𝑇 denote expectation and transpose, respectively; 𝑃 (⋅) and 𝑝(⋅)
denote probability mass functions (PMF) and probability density functions
(PDF), respectively, while 𝑃 (⋅∣⋅) and 𝑝(⋅∣⋅) their corresponding conditional
counterparts; 𝐹 (⋅) is used to denote the complementary cumulative distribu-
tion function (CCDF); 𝒩 (𝜇, 𝜎2) denotes a Gaussian PDF with mean 𝜇 and
variance 𝜎2; 𝜒2

𝑘 (resp. 𝜒
′2
𝑘 (𝜉)) denotes a chi-square (resp. a non-central chi-

square) PDF with 𝑘 degrees of freedom (resp. and non-centrality parameter
𝜉); ℒ(𝜇, 𝛽) denotes a Laplace PDF with mean 𝜇 and scale parameter 𝛽; 𝒬 (⋅)
denotes the CCDF of the standardized normal random variable; the symbols
∼ and

𝑎∼ mean “distributed as” and “asymptotically distributed as”.



II. PROBLEM STATEMENT

We consider a binary hypothesis testing problem in which
a collection of 𝐾 sensors collaborate to detect the presence
of an unknown deterministic parameter 𝜃 ∈ ℝ. The problem
at each sensor can be summarized as follows{

ℋ0 : 𝑥𝑘 = 𝑤𝑘,

ℋ1 : 𝑥𝑘 = ℎ𝑘 𝜃 + 𝑤𝑘,
(1)

where 𝑥𝑘 ∈ ℝ denotes the 𝑘th sensor measurement, ℎ𝑘 ∈ ℝ

is a known coefficient and 𝑤𝑘 ∈ ℝ denotes the noise random
variable (RV) with 𝔼{𝑤𝑘} = 0 and unimodal symmetric PDF2,
denoted with 𝑝𝑤𝑘

(⋅) in what follows. Furthermore, the RVs
𝑤𝑘 are assumed mutually independent. It is worth noting
that Eq. (1) refers to a two-sided test [15], where {ℋ0,ℋ1}
corresponds to {𝜃 = 𝜃0, 𝜃 ∕= 𝜃0} (in our case 𝜃0 = 0).

In this paper we assume that sensors, to meet stringent
bandwidth and energy budgets, have to quantize their ob-
servations before transmitting them to the FC. Specifically,
we assume that 𝑘th sensor employs a (multi-level) 𝑞(𝑘)-bit
quantizer where the observation 𝑥𝑘 is compared with a set
of quantization thresholds {𝜏𝑘(𝑖)}2𝑞(𝑘)

𝑖=0 (being 𝜏𝑘(0) ≜ −∞
and 𝜏𝑘(2𝑞(𝑘)) ≜ +∞), determining 2𝑞(𝑘) non-overlapping
quantization intervals covering the whole ℝ. Specifically,
the corresponding quantizer output is encoded as a binary
codeword denoted by 𝒃𝑘 ∈ {0, 1}𝑞(𝑘), where 𝑘 = 1, 2, . . . ,𝐾.
The non-overlapping quantization intervals are associated to
𝑞(𝑘)-bit binary codewords 𝒗(𝑖) =

[
𝑣1(𝑖) ⋅ ⋅ ⋅ 𝑣𝑞(𝑘)(𝑖)

]𝑇
,

where 𝑣𝑡(𝑖) ∈ {0, 1}. Hence, the output codeword of 𝑞(𝑘)-bit
quantizer at 𝑘th sensor can be expressed as:

𝒃𝑘 ≜

⎧⎨
⎩

𝒗(1) −∞ < 𝑥𝑘 < 𝜏𝑘(1)
𝒗(2) 𝜏𝑘(1) ≤ 𝑥𝑘 < 𝜏𝑘(2)
...

...

𝒗(2𝑞(𝑘)) 𝜏𝑘(2
𝑞(𝑘) − 1) ≤ 𝑥𝑘 < +∞

(2)

The codeword of 𝑘th sensor is then transmitted to the FC
over an error-prone link, modeled as an independent BSC with
(known) BEP 𝑃𝑒,𝑘. The FC then receives a distorted codeword
𝒚𝑘 from 𝑘th sensor, whose conditional probability is:

𝑃 (𝒚𝑘 = 𝒗𝑘(𝑖)∣𝒃𝑘 = 𝒗𝑘(𝑗)) = 𝑃
𝑑𝑖,𝑗

𝑒,𝑘 (1− 𝑃𝑒,𝑘)(𝑞(𝑘)−𝑑𝑖,𝑗)︸ ︷︷ ︸
≜ 𝐺𝑞(𝑘)(𝑃𝑒,𝑘,𝑑𝑖,𝑗)

(3)

where 𝑑𝑖,𝑗 ≜ 𝑑(𝒗𝑘(𝑖),𝒗𝑘(𝑗)) denotes the Hamming distance
between codewords 𝒗𝑘(𝑖) and 𝒗𝑘(𝑗). For the sake of nota-
tional convenience, we collect the noisy codewords (viz. soft-
quantized measurements) received from the sensors in the set
𝒀 ≜ { 𝒚1 ⋅ ⋅ ⋅ 𝒚𝐾} (recall that 𝒚𝑘 ∈ {0, 1}𝑞(𝑘) and thus
codewords from sensors may differ in length).

The problem here is the derivation of a (computationally)
simple test on the basis of 𝒀 and the corresponding quantizer
design for each sensor. The PMF of the observations 𝒀 as

2This class of PDFs comprises many noteworthy examples, such as the
Gaussian, Laplace, Cauchy and generalized Gaussian distributions [15].

a function of 𝜃 is given by 𝑝(𝒀 ; 𝜃) =
∏𝐾

𝑘=1 𝑃 (𝒚𝑘; 𝜃). The
corresponding PMF of the quantized and (channel-)distorted
measurement from 𝑘th sensor can be further expanded as

𝑃 (𝒚𝑘; 𝜃) =
∑

𝒗(𝑖)∈{0,1}𝑞(𝑘)

𝑃 (𝒚𝑘∣𝒃𝑘 = 𝒗(𝑖))𝑃 (𝒃𝑘 = 𝒗(𝑖); 𝜃).

(4)
Based on the quantizer law reported in Eq. (2), the PMF
𝑃 (𝒃𝑘 = 𝒗(𝑖); 𝜃) is given by

𝑃 (𝒃𝑘 = 𝒗(𝑖); 𝜃) = Pr{𝜏𝑘(𝑖− 1) ≤ 𝑥𝑘 < 𝜏𝑘(𝑖)}
= 𝐹𝑤𝑘

(𝜏𝑘(𝑖− 1)− ℎ𝑘𝜃)− 𝐹𝑤𝑘
(𝜏𝑘(𝑖)− ℎ𝑘𝜃) ,

(5)

where 𝐹𝑤𝑘
(⋅) denotes the CCDF of 𝑤𝑘.

III. FUSION RULES DESIGN

A common approach to handle the detection task in the
presence of unknown parameters (viz. composite hypothesis
testing) relies on the use of the GLRT [15]. For the specific
detection problem at hand, the corresponding decision statistic
is obtained by replacing the unknown parameter 𝜃 with its
maximum likelihood (ML) estimate 𝜃 (under ℋ1) in the
likelihood ratio, i.e. [13]{

ΛG ≜ 𝑃 (𝒀 ; 𝜃)

𝑃 (𝒀 ; 𝜃0)

} ℋ1

≷
ℋ0

𝛾 , (6)

where 𝜃0 = 0, 𝛾 is the system threshold, usually employed
to ensure a desired false-alarm rate, and the ML estimate 𝜃 is
evaluated via 𝜃 ≜ argmax𝜃 𝑃 (𝒀 ; 𝜃). It is clear from Eq. (6)
that ΛG requires the solution to an optimization problem,
which increases the computational burden of its implemen-
tation. Specifically, in the case 𝑤𝑘 ∼ 𝒩 (0, 𝜎2𝑤,𝑘), it has been
proved in [13] that ML estimation is a convex problem and
thus can be efficiently solved with local optimizers. Sadly, a
closed form of 𝜃 is not available even in this peculiar case.

Therefore, we resort to the Rao test a simpler and closed-
form alternative to GLRT, available in closed-form for the
broad class of unimodal noise PDFs. In this context, the Rao
test is expressed in implicit form as [15]⎧⎨

⎩ΛR ≜

(
∂ ln𝑃 (𝒀 ;𝜃)

∂𝜃

∣∣∣
𝜃=𝜃0

)2

I (𝜃0)

⎫⎬
⎭

ℋ1

≷
ℋ0

𝛾, (7)

where I(𝜃0) is the Fisher information (FI), i.e., I(𝜃) ≜
𝔼{(∂ ln [𝑃 (𝒀 ; 𝜃)] /∂𝜃)

2} evaluated at 𝜃0. The rationale of the
proposed choice is the simplicity of the test implementation
(since 𝜃 is not required, cf. Eq. (7)) and the same weak-signal
asymptotic performance as the GLRT [15].

So as to obtain ΛR explictly, we first obtain the numerator
term in Eq. (7) (before evaluation at 𝜃 = 𝜃0) as:(

∂ ln [𝑃 (𝒀 ; 𝜃)]

∂𝜃

)2

= (8)(
𝐾∑

𝑘=1

ℎ𝑘
∑2𝑞(𝑘)

𝑖=1 𝑃 (𝒚𝑘∣𝒃𝑘 = 𝒗(𝑖)) 𝜌(𝒃𝑘 = 𝒗(𝑖); 𝜃)∑2𝑞(𝑘)

𝑖=1 𝑃 (𝒚𝑘∣𝒃𝑘 = 𝒗(𝑖))𝑃 (𝒃𝑘 = 𝒗(𝑖); 𝜃)

)2



Secondly, it can be shown that the total FI has the form

I(𝜃) =

𝐾∑
𝑘=1

i𝑘(𝜃) = (9)

𝐾∑
𝑘=1

ℎ2𝑘

2𝑞(𝑘)∑
𝑖=1

{ 2𝑞(𝑘)∑
𝑗=1

𝐺𝑞(𝑘) (𝑃𝑒,𝑘, 𝑑𝑖,𝑗) 𝜌 (𝒃𝑘 = 𝒗 (𝑗) ; 𝜃)
}2

2𝑞(𝑘)∑
𝑗=1

𝐺𝑞(𝑘) (𝑃𝑒,𝑘, 𝑑𝑖,𝑗)𝑃 (𝒃𝑘 = 𝒗 (𝑗) ; 𝜃)

where the auxiliary definition 𝜌(𝒃𝑘 = 𝒗(𝑖); 𝜃) ≜
𝑝𝑤𝑘

(𝜏𝑘(𝑖− 1)− ℎ𝑘𝜃) − 𝑝𝑤𝑘
(𝜏𝑘(𝑖)− ℎ𝑘𝜃) has been em-

ployed.
Thus, combining Eqs. (8) and (9), we obtain ΛR in closed

form as

ΛR =
1

I(𝜃0)

⎛
⎜⎜⎜⎝

𝐾∑
𝑘=1

ℎ𝑘
2𝑞(𝑘)∑
𝑖=1

𝑃 (𝒚𝑘∣𝒃𝑘 = 𝒗(𝑖)) 𝜌(𝒃𝑘 = 𝒗(𝑖); 𝜃0)

2𝑞(𝑘)∑
𝑖=1

𝑃 (𝒚𝑘∣𝒃𝑘 = 𝒗(𝑖))𝑃 (𝒃𝑘 = 𝒗(𝑖); 𝜃0)

⎞
⎟⎟⎟⎠

2

(10)

It is apparent from Eq. (10) that ΛR (as well as ΛG) is
a function of {𝜏𝑘 (𝑖)}2𝑞(𝑘)

𝑖=0 , 𝑘 = 1, 2, . . . ,𝐾, through the
terms 𝑃 (𝒃𝑘 = 𝒗(𝑖); 𝜃0) and 𝜌(𝒃𝑘 = 𝒗(𝑖); 𝜃0). Therefore, the
thresholds of sensors’ (multi-bit) quantizers can be optimized
to achieve improved performance.

IV. QUANTIZER DESIGN

According to [15], the asymptotic (i.e. in a large WSN and
weak-signal condition) PDF of ΛR (as well as 2 lnΛG) is

ΛR
𝑎∼
{
𝜒21 under ℋ0

𝜒
′2
1 (𝜆𝑞) under ℋ1

(11)

where the non-centrality parameter 𝜆𝑞 is given by

𝜆𝑞 ≜ (𝜃1 − 𝜃0)2 I(𝜃0) = 𝜃21 I(𝜃0) , (12)

with 𝜃1 being the true value under ℋ1 (in our case 𝜃0 = 0).
Clearly, larger value of 𝜆𝑞 imply higher performance for both
the GLRT and the Rao test.

From Eq. (12) we can see that the non-centrality parameter
𝜆𝑞 is a monotonically increasing function of the FI evaluated at
𝜃 = 0. The latter is a function of the

(
2𝑞(𝑘) − 1

)
-dimensional

quantization threshold vector 𝝉𝑘 ≜
[
𝜏𝑘(1), . . . , 𝜏𝑘(2

𝑞(𝑘) − 1)
]
,

where the two extreme thresholds for each sensor are obvious-
ly fixed as 𝜏𝑘(0) = −∞ and 𝜏𝑘(2𝑞(𝑘)) = +∞, respectively. In
other words, by optimally choosing the quantizer thresholds
𝝉𝑘’s for sensors, we can optimize the detection performance
of the Rao test.

As a consequence, the asymptotic detection performance
of the Rao detector (as well as GLRT) can be optimized by
solving the following optimization problem

max
{𝝉𝑘}𝐾

𝑘=1

I
(
𝜃0, {𝝉𝑘}𝐾𝑘=1

)
(13)

where, with a slight abuse of notation, we have highlighted the
dependence of the FI on the 𝝉𝑘’s. Finally, exploiting the mutual

independence of the distortion channels, the optimization
can be further decoupled into the following 𝐾 independent
threshold vector problems

𝝉 ★
𝑘 ≜ argmax

𝝉𝑘

𝑔𝑘(𝝉𝑘), 𝑘 = 1, . . . ,𝐾, (14)

where 𝑔𝑘(𝝉𝑘) is explicitly defined as 𝑔𝑘(𝝉𝑘) ≜ i𝑘(𝜃0, 𝝉𝑘) (cf.
Eq. (9)). We highlight that each problem is subject to the
ordered constraints 𝜏𝑘(𝑖) < 𝜏𝑘(𝑖+ 1), for 𝑖 = 1, . . . 2𝑞(𝑘) − 1.

Clearly, given the same asymptotic performance achieved by
both GLRT and Rao test, the optimization problem (14) has the
same form as [13, Eq. (22)], used to optimize the performance
of the more complex GLRT. Consequently, we can utilize the
same method proposed therein, i.e. the PSOA, to search the
optimal quantization thresholds in (14), due to its appeal with
high-dimensional, non-convex optimization problems.

In brief, the PSOA is an iterative stochastic optimization
method [17] resorting to a swarm of 𝑚 = 1, 2, . . . ,𝑀
particles, here used3 to explore the (2𝑞 − 1)-dimensional space
(constrained in each dimension as 𝜏(𝑖) ∈ {−𝜏𝑚𝑎𝑥, 𝜏𝑚𝑎𝑥})
in search of a (hopefully) globally-optimal solution for each
problem in Eq. (14). At ℓth iteration, the 𝑚th particle is
described by two characteristics: the position 𝝉 ℓ

𝑚 (i.e. the
objective argument) and velocity vectors 𝝂ℓ

𝑚 (i.e. the direction
of improvement). The PSOA evolution is characterized by
the best personal position achieved by 𝑚th particle so far
(𝒑𝒃𝒆𝒔𝒕ℓ𝑚) and the swarm best position (𝒔𝒃𝒆𝒔𝒕ℓ). At (ℓ+1)th
step, both of them are employed to update the velocity
of each particle 𝝂ℓ+1

𝑚 and, consequently, its position (via
𝝉 ℓ+1
𝑚 = 𝝉 ℓ

𝑚 + 𝝂ℓ+1
𝑚 ). The algorithm terminates when all the

norms of particles’ velocities are below a certain value 𝑣𝑡𝑜𝑙.

V. NUMERICAL RESULTS

In this section we compare the Rao test to the GLRT and
also assess their performance vs. quantization resolution. We
evaluate the performance in terms of system false alarm and
detection probabilities, defined as 𝑃𝐹0

≜ Pr{Λ > 𝛾∣ℋ0} and
𝑃𝐷0

≜ Pr{Λ > 𝛾∣ℋ1}, respectively, where Λ is the statistic
employed at the DFC. Also, the 𝑘th sensor observation signal-
to-noise ratio (SNR) is defined as Γ𝑘 ≜

(
ℎ2𝑘𝜃

2/𝔼{𝑤2
𝑘}
)
.

In Figs. 1 and 2 we illustrate 𝑃𝐷0
vs. 𝑃𝐹0

in a WS-
N made of 𝐾 = 10 sensors with (𝑖) 𝑤𝑘 ∼ 𝒩 (0, 𝜎2)
and (𝑖𝑖) 𝑤𝑘 ∼ ℒ (0, 𝛽), respectively, where 𝔼{𝑤2

𝑘} = 1,
ℎ𝑘 = 1, 𝜃 = 1 (thus Γ𝑘 = 0dB) and two BEP values,
i.e. 𝑃𝑒,𝑘 = 𝑃𝑒 ∈ {0, 0.2}. These parameters determine a
(simplified) homogeneous scenario. Also, the figures are based
on 105 Monte Carlo runs. For each detector, we report the
performance with 𝑞𝑘 = 𝑞 ∈ {1, 2, 3} quantization bits, with
thresholds optimized according to the criterion defined in
Sec. IV (via PSOA). Referring to PSOA parameters, we set
𝑀 = 100, 𝜏𝑚𝑎𝑥 = 5 and 𝜈𝑡𝑜𝑙 = 10−6. Furthermore, aiming
at a complete comparison, a WSN with 𝐾 = 10 unquantized
sensors is assumed as a reference providing an upper-bound
on the performance.

3In the following, for the sake of a lighter notation, we will drop the
subscript "𝑘" referring to the sensor index.
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Fig. 1: 𝑃𝐷0
vs 𝑃𝐹0

; WSN with 𝐾 = 10 sensors, 𝑤𝑘 ∼
𝒩 (0, 1), Γ𝑘 = 0dB, and (a): 𝑃𝑒 = 0; (b): 𝑃𝑒 = 0.2.

First, it is shown that the proposed Rao (as well as GLR)
test works well in the case of quantized sensors. Secondly,
it is apparent that the performances of the GLR and Rao
tests are practically the same for all considered scenarios.
However, the implementation of the Rao test has the ad-
vantage that it is more simpler than the GLRT. Also, the
adoption of multi-bit quantization shows a significantly higher
detection probability than one-bit quantization. In particular,
the detection performance with 3-bit quantized sensors is
very close to the considered upper bound, when the channel
is perfect. Nevertheless, in the presence of channel errors
(e.g., 𝑃𝑒 = 0.2 in this example), the performance of both
detectors is significantly degraded.

Finally, the detection performance under Laplacian noise
is observed to be higher than that under Gaussian noise. The
reason is that the value of FI information 𝐼(𝜃0) under Gaussian
noise is smaller than that of Laplacian noise. Indeed, it has
been proved that given a certain variance, Gaussian-distributed
noise corresponds to the minimum 𝐼(𝜃0) [15].
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Fig. 2: 𝑃𝐷0
vs 𝑃𝐹0

; WSN with 𝐾 = 10 sensors, 𝑤𝑘 ∼
ℒ (0, 𝛽), Γ𝑘 = 0dB, and (𝑎): 𝑃𝑒 = 0; (𝑏): 𝑃𝑒 = 0.2.

VI. CONCLUSIONS AND FURTHER DIRECTIONS

We proposed a Rao test for multi-bit DD of an unknown
deterministic signal in WSNs as an attractive (and simpler,
being in closed-form) alternative to the GLRT for a general
model with quantized measurements and zero-mean, unimodal
and symmetric noise, over non-ideal and non-identical BSCs.
Also, we provided the explicit expression of the asymptotic
(weak-signal) performance of Rao fusion rule, and then, to
maximize its asymptotic performance, we resorted to PSOA.
It was shown through simulations (for Laplacian and Gaussian
noises) that the Rao test, in addition to being asymptotically
equivalent to the GLRT, achieves practically the same perfor-
mance for a finite number of sensors. In addition, results also
demonstrated the advantage of multi-bit quantization against
one-bit quantization. Further directions will include design of
Rao test for hybrid combinations of smart/dumb sensors [18],
as well as censoring [19].
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